Description

Application
To be installed in the suction line of the pumps of hydraulic systems resp. upstream of the charge pumps of hydrostatic drives.

Performance features
Protection against wear.
By means of filter elements that, in full-flow filtration, meet even the highest demands regarding cleanliness classes.

Protection against malfunction.
By means of full-flow filtration in the system return, the pumps above all are protected from dirt particles remaining in the system after assembly, repairs, or which are generated by wear or enter the system from outside.

Special features
- **By-pass valve:**
 The location close to the suction inlet prevents dirt particles retained by the filter element from entering into the clean oil side.

- **Filter element locking valve:**
 Ensures that dirt accumulated in the filter element is removed together with the element and cannot return to the tank.

- **Foot valve:**
 When the screw-on cap is removed for maintenance, the foot valve closes automatically. This makes it possible to service the filter even if it is submerged below the oil level in a full tank.

Filter elements
Flow direction from centre to outside. The star-shaped pleating of the filter material results in:
- large filter surfaces
- low pressure drop
- high dirt-holding capacities
- long service life

Filter maintenance
By using a clogging indicator the correct moment for maintenance is stated and guarantees the optimum utilization of the filter life.
Materials
Screw-on cap: Polyester, GF reinforced
Filter head: Aluminium alloy
Filter bowl: Steel, phosphated
Seals: NBR (FPM on request)
Filter media: Paper – cellulose web, impregnated with resin

Accessories
Electrical and optical clogging indicators are available on request.
Dimensions and technical data see catalogue sheet 60.20.

Characteristics
Nominal flow rate
Up to 70 l/min (see Selection Chart, column 2)
The nominal flow rates indicated by ARGO-HYTOS are based on the following features:
› closed by-pass valve at \(\nu \leq 200 \text{ mm}^2/\text{s} \)
› Element service life > 1,000 operating hours at an average fluid contamination of 0,07 g per l/min flow volume.
› Flow velocity in the connection lines \(\leq 1,5 \text{ m/s} \). If units not equipped with a bypass valve are used in hydrostatic drives, the recommendations regarding their technical application given on catalogue sheet 10.310 should be observed.

Connection
Threaded ports according to ISO 228 or DIN 13. Sizes see Selection Chart, column 6 (other port threads on request)

Filter fineness
16 µm(c) ... 30 µm(c)
\(\beta \)-values according ISO 16889
(see Selection Chart, column 4 and diagram Dx)

Dirt-holding capacity
Values in g test dust ISO MTD according to ISO 16889
(see Selection Chart, column 5)

Hydraulic fluids
Mineral oil and biodegradable fluids
(HEES and HETG, see info-sheet 00.20).

Temperature range
-30 °C ... +100 °C (temporary -40 °C ... +120 °C)

Viscosity at nominal flow rate
› at operating temperature: \(\nu < 60 \text{ mm}^2/\text{s} \)
› start-up viscosity:
 Determine \(\nu_{\text{min}} \), observing the permissible pressure at the pump inlet according to diagram D; determine \(\Delta p \) as a function of the viscosity (take pressure loss in connection lines into account!)
› at initial operation of units equipped with a bypass valve:
The recommended starting viscosity can be read from the diagram D (pressure drop as a function of the kinematic viscosity) as follows: Find the 70 % \(\Delta p \) of the cracking pressure of the by-pass valve on the vertical axis. Draw a horizontal line so that it intersects the \(\Delta p \) curve at a point. Read this point on the horizontal axis for the viscosity.

Mounting position
Vertical mounting to be preferred, suction opening pointing downwards, versions equipped with foot valve for horizontal mounting also.
Diagrams

\(\Delta p\)-curves for complete filters in Selection Chart, column 3

D1 Pressure drop as a function of the flow volume at \(\nu = 35\) mm\(^2\)/s (0 = casing empty)

Pressure drop as a function of the kinematic viscosity at nominal flow

Filter fineness curves in Selection Chart, column 4

Dx Filtration ratio \(\beta\) as a function of particle size \(x\) obtained by the Multi-Pass-Test according to ISO 16889

The abbreviations represent the following \(\beta\)-values resp. finenesses:

For EXAPOR®MAX2 and Paper elements:
- 16EX2 = \(\bar{\beta}\)\(_{16(0)}\) = 200 EXAPOR®MAX 2
- 30P = \(\bar{\beta}\)\(_{30(0)}\) = 200 Paper
- 50P = \(\bar{\beta}\)\(_{50(0)}\) = 200 Paper

Based on the structure of the filter media of the 30P and 50P paper elements, deviations from the printed curves are quite probable.

For screen elements:
- 40S = screen material with mesh size 40 µm
- 60S = screen material with mesh size 60 µm
- 100S = screen material with mesh size 100 µm

Tolerances for mesh size according to DIN 4189.

For special applications, finenesses differing from these curves are also available by using special composed filter material.
Selection Chart

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Nominal flow rate</th>
<th>Pressure drop</th>
<th>Filter fineness</th>
<th>Dirt-holding capacity</th>
<th>Connection B</th>
<th>Cracking pressure of by-pass</th>
<th>Foot valve</th>
<th>Symbol</th>
<th>Replacement filter element</th>
<th>Part no.</th>
<th>Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 094-6801</td>
<td>60</td>
<td>D1/1</td>
<td>16EX2</td>
<td>40</td>
<td>G1½</td>
<td>-</td>
<td>2</td>
<td>3,2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 094-6110</td>
<td>70</td>
<td>D1/2</td>
<td>30P</td>
<td>34</td>
<td>G1½</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>P2.0933-01</td>
<td>3,0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ES 094-6111</td>
<td>70</td>
<td>D1/2</td>
<td>30P</td>
<td>34</td>
<td>G1½</td>
<td>-</td>
<td>2</td>
<td>P2.0933-01</td>
<td>3,2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 094-6121</td>
<td>70</td>
<td>D1/3</td>
<td>30P</td>
<td>34</td>
<td>G1½</td>
<td>-0,25</td>
<td>4</td>
<td>P2.0933-01</td>
<td>3,2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All filters are delivered with a plugged clogging indicator connection G1/4.

As clogging indicators either manometers or vacuum switches can be used. Optional extension pipes adapt the filter length to various tank depths.

For the appropriate clogging indicator see catalogue sheet 60.20.

Remarks:

- The start of the red area respectively the actuating pressure of the vacuum switch has always to be higher than the cracking pressure of the by-pass valve (see Selection Chart, column 7).
- Clogging indicators are optional and always delivered detached from the filter.
- The filters listed in this chart are standard filters. Other designs available on request.

1 Those values apply when used in hydrostatic drives and instructions in catalogue sheet 10.310 have to be observed
2 For designs without foot valve
Dimensions

Connection G¼ for clogging indicator

Groove for O-ring 126 x 4
O-ring part no. N007.1264
on request

Design without foot valve

Design with 1 outlet port

Design with 2 outlet ports on request

Required mounting surface

For calculation of dimension EV see selection chart

Measurements

| Type | A | B | C | D | E | F | G | H | I | K | K₅ | K₂ | L | M | N | O | P |
|------|----|-----|-----|-----|----|----|-----|-----|-----|-----|----|----|----|----|----|----|
| ES 094 | 115 | G1¼ | 119/121 | 126,5 | - | 11,5 | 32 | 106 | 525 | 305 | 364 | 325 | 35 | 10 | 62,5 | 11 | 13 |
| Type | Q | R | S | T | | | | | | | | | | | | |
| ES 094 | 165 | 76,5 | 76 | 141 | | | | | | | | | | | | |

Symbols

1

2

3

4
Spare Parts

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Designation</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Screw-on cap with Pos. 2</td>
<td>ES 074.1212</td>
</tr>
<tr>
<td>2</td>
<td>O-ring 100 x 4</td>
<td>N007.1004</td>
</tr>
<tr>
<td>3</td>
<td>Screw-on cap with Pos. 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for ES 094 (without by-pass)</td>
<td>ES 094.1212</td>
</tr>
<tr>
<td></td>
<td>for ES 094 (with by-pass)</td>
<td>ES 094.1213</td>
</tr>
<tr>
<td>4</td>
<td>Filter element</td>
<td>see Chart / col. 10</td>
</tr>
<tr>
<td>5</td>
<td>Valve cone</td>
<td>ES 074.0202</td>
</tr>
<tr>
<td>6</td>
<td>O-ring 126 x 4 *</td>
<td>N007.1264</td>
</tr>
<tr>
<td>7</td>
<td>Rubber ring</td>
<td>N042.7401</td>
</tr>
</tbody>
</table>

* not included in basic equipment

The functions of the complete filters as well as the outstanding features of the filter elements assured by ARGO-HYTOS can only be guaranteed if original ARGO-HYTOS spare parts are used.

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941 Verification of collapse/burst pressure rating
ISO 2942 Verification of fabrication integrity (Bubble Point Test)
ISO 2943 Verification of material compatibility with fluids
ISO 3968 Evaluation of pressure drop versus flow characteristics
ISO 16889 Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181 Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leakfree function and solidity of our filters.